## STANDARDIZE

The STANDARDIZE function computes standardized variables from an array of m variables (columns) and n observations (rows). The result is an m -column, n -row array where all columns have a mean of zero and a variance of one.

This routine is written in the IDL language. Its source code can be found in the file ``` standardize.pro``` in the ``` lib``` subdirectory of the IDL distribution.

### Calling Sequence

Result = STANDARDIZE( A )

### Argument

#### A

An m -column, n -row single- or double-precision floating-point array.

### Keywords

#### DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

### Example

Define an array with 4 variables and 20 observations.

array = \$

[[19.5, 43.1, 29.1, 11.9], \$

[24.7, 49.8, 28.2, 22.8], \$

[30.7, 51.9, 37.0, 18.7], \$

[29.8, 54.3, 31.1, 20.1], \$

[19.1, 42.2, 30.9, 12.9], \$

[25.6, 53.9, 23.7, 21.7], \$

[31.4, 58.5, 27.6, 27.1], \$

[27.9, 52.1, 30.6, 25.4], \$

[22.1, 49.9, 23.2, 21.3], \$

[25.5, 53.5, 24.8, 19.3], \$

[31.1, 56.6, 30.0, 25.4], \$

[30.4, 56.7, 28.3, 27.2], \$

[18.7, 46.5, 23.0, 11.7], \$

[19.7, 44.2, 28.6, 17.8], \$

[14.6, 42.7, 21.3, 12.8], \$

[29.5, 54.4, 30.1, 23.9], \$

[27.7, 55.3, 25.7, 22.6], \$

[30.2, 58.6, 24.6, 25.4], \$

[22.7, 48.2, 27.1, 14.8], \$

[25.2, 51.0, 27.5, 21.1]]

FOR K = 0, 3 DO PRINT, MOMENT(array[K,*])
; Compute the mean and variance of each variable using the MOMENT function. The skewness and kurtosis are also computed.

result = STANDARDIZE(array) ; Compute the standardized variables.

FOR K = 0, 3 DO PRINT, MOMENT(result[K,*])
; Compute the mean and variance of each standardized variable using the MOMENT function. The skewness and kurtosis are also computed.

IDL prints:

25.3050 25.2331 -0.454763 -1.10028

51.1700 27.4012 -0.356958 -1.19516

27.6200 13.3017 0.420289 0.104912

20.1950 26.0731 -0.363277 -1.24886

-7.67130e-07 1.00000 -0.454761    -1.10028

-3.65451e-07 1.00000 -0.356958    -1.19516

-1.66707e-07 1.00000 0.420290     0.104913

4.21703e-07 1.00000 -0.363278    -1.24886