ASTRONOMY 124 TEST #1 REVIEW

Introduction
 The Chandra X-ray Observatory

Night Sky
 Contents, Angles, Seeing
 Motions
 Rotation and Revolution of Earth

Basic Stellar Properties
 Parallax
 Stellar Distances, Parsec
 Proper Motion
 Scientific Notation
 Brightness and Magnitude
 Colors, Absolute Magnitude

Light
 Energy
 Kinetic and Potential
 Conserved
 Luminosity, Brightness
 Dependence on Distance
 Electromagnetic Waves
 Produced by Moving Charges
 Wavelength and Frequency
 Electromagnetic Spectrum
 Radio, Infrared, Visible, Ultraviolet, X-ray, Gamma-ray
 (in order of decreasing wavelength)
 Red, Orange, Yellow, Green, Blue, Indigo, and Violet
 (ROY G. BIV, in order of decreasing wavelength)
 Doppler Effect
 Measures Radial Velocity
 Moving Away \(\to\) Redshift
 Moving Towards \(\to\) Blueshift

Photons
 Higher Frequency \(\to\) Higher Energy

Telescopes
 Reasons for:
 Collect more light
 Better resolution
 Observe non-visible radiation
 Resolution vs. wavelength and aperture
 Interferometers
 Optical telescopes
 Refractors, Reflectors
 Recent telescopes
Temperature and Heat
Atoms
Heat is kinetic energy of atoms (total)
Temperature is kinetic energy of each single atom

Thermal Radiation
Temperature increases → more radiation
Temperature increases → higher frequencies
$L \propto R^2 T^4$ for stars

Radii of Stars
Main Sequence, Giants, Supergiants, White Dwarfs

Atoms and Radiation
Spectral Lines
Composition of Stars
Mainly Hydrogen and Helium, heavier elements rarer

Kirchhoff’s Laws
Hot, Dense → Thermal Radiation (Continuum)
Hot, Thin → Emission Lines
Cooler, Less Dense in front of Hotter, Denser →
Absorption Lines on Thermal Radiation

Stellar Spectra
Absorption Lines on Thermal Radiation
Stars hotter, denser inside

Spectral Types
O B A F G K M (hot to cool)

Single Stars: What can we learn?
Distance, Motion
Luminosity, Temperature, Radius
Composition, Rotation, Magnetic Field

Binary Stars
Visual, Spectroscopic, Eclipsing

Stellar Masses
Determine from binary stars
Mass vs. Luminosity

Laws of Motion
Mass, Volume, Density, Weight
Force and Acceleration
Force of Gravity

HR Diagram
Luminosity vs. Temperature
Main Sequence, Giants, Supergiants, White Dwarfs
Evolution or Intrinsic Differences?
How Stars Work
 Light only from outer edge
 Stars are long lived, Sun is 5 billion years old

Pressure balances Gravity (Hydrostatic Equilibrium)
 Central Temperature = 15 million degrees K for Sun

Large Energy Source Needed to Power Stars

Nuclear Energy
 Curve of Binding Energy
 Fission and Fusion
 Fusion is energy source for stars
 H Burning, He Burning, C Burning

Central Role of Nuclear Reactions
 Make stellar energy
 Allow stars to live long time
 Make heavy elements

Solar Neutrino Experiment
 Too few neutrinos detected
 Recent experiments → neutrinos have mass and oscillate

Theory of Stars
 Hydrostatic equilibrium
 Nuclear energy
 Heat flows outward via radiation and/or convection

Russell–Vogt Theorem
 Mass and composition determine stellar structure
 Main Sequence = stars with different masses, made mainly of hydrogen

Stellar Evolution
 HR Diagrams and Stellar Clusters

Aging of Stars
 Lifetime vs. Mass
 Main-Sequence = normal life, H burning in core
 Giant = H shell burning
 Horizontal Branch = He core burning, H shell
 Supergiant = H and He shells
 $M < 8 \, M_\odot$ stop with C core
 $M > 8 \, M_\odot$ stop with Fe core