ASTRONOMY 2110 – TEST #1 REVIEW
You will have 50 minutes to do the test. No books or notes or homeworks (problems, your solutions, or mine) or any other written materials may be used. Calculators are allowed and are encouraged. The test will consist of calculational problems similar to those on the homework (about 2/3 of the credit), and qualitative problems (about 1/3 of the credit).

TOPICS

Introduction
 Gamma Ray Bursts — An Astronomical Mystery Story
 Astronomy and the Nature of Science
 Units: SI, CGS, and Astronomical

The Visible Sky
 Coordinate Systems
 Horizon, Zenith
 Angles
 Rotation of Earth
 Hour Angle
 Vernal Equinox
 Right Ascension, Declination
 Precession of Earth’s Axis
 Constellations
 Time
 Solar Time
 Sidereal Time
 When and Where Can You See What Stars?

Calendars
 Gregorian Calendar
 Julian Date

Motions of Planets
 Retrograde Motion
 Inferior and Superior Planets

Greeks
 Aristotle
 Earth at center
 Circular orbits
 Aristarchus — Sun at Center
 Hipparchus — can’t detect parallax; Earth doesn’t move?

Ptolemy
 Earth offset
 Epicycles
 Inferior planets tied to Earth-Sun line
 Problems: not predictive, very complex
Copernicus
- Sun at Center of Solar System
- Planets Further from Sun Move Slower
- Explains Retrograde Motion
 - Due to combined motion of planet and Earth
 - At “passing”, closest to Earth
- Sidereal and Synodic Periods
- Legacy of Copernicus
 - We are not special
 - Complex phenomena, but simple physical laws
 - Predictive power of theories

Galileo
- First Great Experimenter
- Inertia and motion
- Gravity
- Astronomical Use of Telescope
 - Surface features of Moon
 - Sun spots
 - Moons of Jupiter
 - Rings of Saturn
 - Milky Way = stars
- Phases of Venus → proved Copernicus Correct
- Problems with Authorities

Tycho Brahe
- Accurate Measurements of Planetary Motion

Kepler
- Three Laws, Motion of Planets
 - Ellipse, focus, semimajor axis
 - Polar coordinate equation
 - Conic sections
 - Equal areas in equal times
 - $(P/\text{years})^2 = (A/\text{AU})^3$
- Astronomical Unit, AU
Newton

Discoveries and Inventions Include:
- Calculus
- Basic laws of physics and mechanics
- Theory of gravity
- Theory of light and color
- Reflecting telescope

Laws of Motion
- Force, acceleration, mass, inertia
 - First law: no force → straight line motion, constant speed
 - Second law: \(F = ma \)
 - Third law: equal and opposite forces

Conservation Laws
- Conservation of momentum
- Center of mass
- Conservation of energy
- Conservation of angular momentum
- Relation to symmetries

Theory of Gravity
- Gravity depends on masses and distance
 \[F = -\frac{GMm}{d^2} \]

Two-Body Problem

Planetary Motion
- Force is gravity
- Derived Kepler’s laws
- General orbit is conic section
- Energy \(<, =, > 0 \) → bound or unbound, shape

Virial Theorem

Electromagnetic Forces and Light

Maxwell’s Equations

Light = **Electromagnetic Waves**
- Energy, Brightness, and Luminosity
- Wavelength, Frequency, Speed
 - Wavelength increases \(\rightarrow \) frequency decreases

Electromagnetic Spectrum
- Radio, Infrared, Visible, Ultraviolet, X-ray, Gamma-ray (Increasing Frequency)
 - Only radio and visible easily penetrate atmosphere

Wave Properties of Light
- Reflection
- Refraction
- Diffraction
 - Limiting resolution of telescopes
- Value of Space Telescopes

Doppler Effect
- Non-relativistic, Relativistic Limits
- Redshift
- Measures Radial Velocity \(v_r \)
Basic Stellar Properties

Motions
- Radial Velocity \(v_r \)
- Proper Motion \(\mu \)

Distance and Parallax
- Parallax
- Stellar Distances
- Parsec (pc)
 - Difficulty with Measuring Distances

Brightness and Magnitude
- Apparent Magnitudes
- Colors and Temperatures
- Bolometric Magnitudes
- Luminosities and Absolute Magnitudes

Luminosities of Stars
- Wide Range, \(10^{-4} \) to \(10^6 \) \(L_\odot \)

Radii of Stars
- Main Sequence, Giants, Supergiants, White Dwarfs

Surface Temperatures of Stars
- Effective Temperature, \(T_{\text{eff}} \)
- \(L = 4\pi R^2\sigma T_{\text{eff}}^4 \)
 - Narrower Range, 3000 K to 50000 K

Binary Stars
- Visual, Spectroscopic, Eclipsing

Visual Binaries
- Apparent Orbit
- Semimajor Axis \(a \), Period \(P \) → Masses
 - \((M_1 + M_2)/M_\odot = a_{\text{AU}}^3/P_{\text{yr}}^2 \)
 - \(M_1/M_2 = a_2/a_1 \)

Spectroscopic Binaries
- Single-lined, Double-lined
- Velocity Curve
 - Can’t determine inclination angle \(i \)
 - Mass function \(f \), upper limit on unseen star

Eclipsing Binaries
- Inclination \(i \approx 90^\circ \)
- Light Curve
- Hotter Star Behind at Primary Eclipse
- Unequal Durations and Spacings Give Eccentricity (\(e \) and \(\Omega \))
- Duration of Eclipses → Radii of Stars
- Variation in Brightness → Radii, Temperatures of Stars

Stellar Masses
- Relatively Narrow Range, 0.1 \(M_\odot \) to 100 \(M_\odot \)
- Mass-Luminosity Relation, roughly \(L \propto M^3 \)
The Sun

Ordinary Star

Solar composition = H, He, heavy elements

Radioactivity → Age = 4.6 billion years

Solar Rotation

About once a month

Differential rotation

Solar Atmosphere

Photosphere

Optical depth very large, photosphere = where light comes from

Granulation = convection cells

Photospheric spectrum = continuum + absorption lines

Implies Sun hotter inside

Chromosphere

Corona, very hot

Solar wind

Heating due to magnetic fields

Magnetic Fields and Plasma

Microscopic motions

Charged particles → helical motion in magnetic field

Gyro radius

Bulk properties

Frozen-in condition, B and plasma locked together

Bigger pressure is boss

Solar Activity

Sunspots

Plages, prominences, filaments, flares

Magnetic origin

Solar Magnetic Field

Dynamo like Earth, planets

Reverses every 11 years

Solar Cycle and Sunspots

Sunspots

Solar cycle

Bipolar groups

Butterfly diagram

Dynamo Model for Solar Magnetic Field and Activity