Mie Theory for Optical Properties of Dust Grains
Assumes spherical, homogeneous, isotropic grains and classical EM interactions

Definitions:

\[a \equiv \text{radius of grain} \]
\[\lambda \equiv \text{wavelength of light} \]
\[m \equiv \text{complex index of refraction} \]

Characterize grain by

\[x \equiv \frac{2\pi a}{\lambda} \]
\[y \equiv mx \]

EM wave solution in terms of spherical Bessel functions \(j_n(x) \) and \(h_n^{(2)}(x) \):

\[\psi_n(x) \equiv x j_n(x) \]
\[\zeta_n(x) \equiv x h_n^{(2)}(x) \]

Scattering amplitudes: \(a_n \) for incident wave with polarization \(E \perp \) scattering plane; \(b_n \) for incident polarization \(E \parallel \) scattering plane

\[a_n = \frac{\psi_n'(y) \psi_n(x) - m \psi_n(y) \psi_n'(x)}{\psi_n'(y) \zeta_n(x) - m \psi_n(y) \zeta_n'(x)} \]
\[b_n = \frac{m \psi_n'(y) \psi_n(x) - \psi_n(y) \psi_n'(x)}{m \psi_n'(y) \zeta_n(x) - \psi_n(y) \zeta_n'(x)} \]

Efficiencies for extinction \((Q_e) \), scattering \((Q_s) \), and absorption \((Q_a) \) are:

\[Q_e = \frac{2}{x^2} \text{Re} \left[\sum_{n=1}^{\infty} (2n + 1)(a_n + b_n) \right] \]
\[Q_s = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n + 1) \left(|a_n|^2 + |b_n|^2 \right) \]
\[Q_a = Q_e - Q_s \]