Prev        All        Next    


     Questions     Refs.   

(1) Introduction
      (a) Gas/Fluid Physics & Stellar Dynamics
      (b) A Path Through the Subject
(2) Potential Theory
      (a) Preliminaries
      (b) Examples of Density-Potential Pairs
            (i)   Point Mass (Keplerian)
            (ii)  Uniform Spherical Shell
            (iii) Homogeneous Sphere
            (iv) Logarithmic Potentials (Flat Vrot)
            (v)  Spherical Systems
            (vi) Axisymmetric Thin Disks
            (vii) Axisymmetric Flattened Systems
            (viii) Triaxial Ellipsoids
            (ix)  Multipole Expansion
(3) Orbit Classes
(4) Numerical N-Body Methods
(5) The Virial Theorem
      (a) Simple Illustrations
            (i)   Circular Orbit
            (ii)  Time Averaged Keplerian Orbit
      (b) The General Case
      (c) Mass Determination
      (d) Binding Energy
      (e) Negative Specific Heat
      (f) Rotational Flattening
(6) Describing Collisionless Systems
      (a) The Distribution Function (DF) : f(r, v, t)
      (b) Collisionless Boltzmann Equation (CBE)
      (c) The Jeans Equation(s)
      (d) Applications of the Jeans Equations
            (i)   Spherical Steady State Systems
            (ii)  Rotational Flattening Revisited
            (iii) Vertical Disk Structure
(7) Steady State : The DF as   f(E, |L|, Lz)
      (a) Integrals of Motion & Jeans Theorem
      (b) Self-Consistency
      (c) Spherical Isotropic Systems : DF = f(E)
      (d) Deriving f(E) from (r)
      (e) From   f(E)d3r d3v   to   N(E)dE
(8) Model Building Using DFs
      (a) Polytropic Sphere   :   Power Law f(E)
      (b) Isothermal Sphere   :   Exponential f(E)
            (i)   Singular Isothermal Sphere (SIS)
            (ii)  General Isothermal Sphere
      (c) King Models : Truncated Exponential f(E)
      (d) Other Models
(9) Violent Relaxation
(10) Introducing Star-Star Encounters
      (a) Encounter and Relaxation Timescales
            (i)   Direct collision (or tidal capture)
            (ii)  Strong Deflection
            (iii) Weak Deflection
      (b) Timescales for Real Stellar Systems
      (c) The Fokker-Planck Equation
      (d) Results : The Effects of Encounters
            (i)   Relaxation
            (ii)  Equipartition
            (iii) Escape (Ejection and Evaporation)
(11) Further Topics