Mapping the Molecular Hydrogen Emission in the Cooling Flow Cluster Abell 1795

Louise O. V. Edwards¹ and Francine Marleau²

¹ Saint Mary’s University
² SIRTF Science Center, CalTech

We present near-infrared imaging data of the $v = 1-0$ S(1) emission line of molecular hydrogen (H$_2$) in the cooling flow cluster Abell 1795. A symmetric extended H$_2$ emission (~ 3 kpc in diameter) is found in the central dominant galaxy. We measure a H$_2$ line emission flux for this central component of $1.93 \pm 0.79 \times 10^{-18}$ W/m2. This result is consistent with recent spectroscopic measurements of Jaffe et al. (2001). The H$_2$ emission is aligned with the Hα and excess UV emission but does not share the tail-like extended morphology. Comparison with X-ray data reveals an offset for the central emission peaks as well as the absence of a corresponding H$_2$ extended tail. The Hα/H$_2$ ratio is consistent with heating by hot stars. However, our H$_2$ image does not reveal any diffuse spatial structure usually associated with heating due to stellar UV sources. Rather, its condensed nature is more consistent with heating by an AGN. We also report on the first detection of H$_2$ emission in other cooling flow cluster members.

1. Introduction

X-ray observations of nearby clusters of galaxies show sharp emission peaks as dense gas in the center of the clusters cool. This cool gas, unable to support the outer part of the intracluster medium, flows towards the center of the cluster. The result is a long-lived stable “cooling flow”. In the very central regions of these flows, the gas is expected to become molecular. We expect H$_2$ emission, which is characteristic of molecular gas at temperatures of order 1000 K.

Molecular gas has been observed spectroscopically in the central dominant galaxies (CDGs) of many cooling flow clusters (CFCs) (Jaffe & Bremer 1997; Jaffe et al. 2001; Edge 2001; Edge et al. 2002). Molecular hydrogen (H$_2$) is detected in many CDGs of cooling flow clusters, but not all (Edge et al. 2002). A handful of CDGs have also been imaged in Hα (Donahue et al. 2000; Baker et al. 2003) and in H$_2$ (Donahue et al. 2000) and a remarkable correspondence of the bright emission features is found. Some CDGs that contain radio sources have been observed to show structure in X-ray that is similar to the Hα. On large scales (~ 10 kpc), at the center of these clusters, the X-ray morphology seems to be anti-correlated with the position of the radio lobes.

Jaffe & Bremer (1997) find in their sample of CFCs that the inferred mass cooling rate from the X-ray data is lower than the one inferred from H$_2$ emission at 1000 K. One explanation for this discrepancy is that the cool (~ 1000 K) molecular gas at the center of the cooling flow is being excited by an external source. Possible scenarios include reheating by an active galactic nucleus (AGN), shocks, and ultra-violet (UV) radiation from hot stars (Wilman et al. 2002). Of the three cooling flow clusters whose molecular hydrogen emission has been imaged, NGC 1275 shows condensed emission whereas Abell 2597 and PKS 0745-191 display filamentary emission (Donahue et al. 2000). Donahue et al. (2000) find a correlation between morphology of the H$_2$ emission and the reheating mechanism. They suggest that an H$_2$ emission with condensed morphology is associated with nuclear activity (AGN) whereas filamentary emission is mostly seen if the heating is due to stellar UV sources.

Abell 1795 was first classified as a cooling flow cluster by Stewart et al. (1984). Its X-ray emission implies a mass deposition rate of $\sim 100 M_\odot$/year (Ettori et al. 2002). Abell 1795 has a large centrally located cD galaxy (Bautz-Morgan type I) and is at a redshift of 0.0627. The Chandra observations of this cluster reveal an X-ray peak five arcseconds north of the cD galaxy and a tail which extends ~ 80 kpc to the south-southeast (Fabian et al. 2001a). The misaligned peaks and tail may be the result of the oscillation of the cD galaxy around the cluster potential which creates a wake (Fabian et al. 2001a). Abell 1795 has been imaged in the optical, radio and X-ray (Pinkney et al. 1996; Ge & Owen 1993; Fabian et al. 2001a). Hα emission and UV excess has been detected in its CDG (Baker et al. 2003; McNamara et al. 1996), suggesting a recent star formation episode. These emissions also appear to exhibit the same tail-like spatial structure as seen in the X-ray. Spectroscopy of the CDG has been done in the near-IR, optical and UV. The $v = 1-0$ S(1) emission line of H$_2$ is detected with a flux of $1.58 \pm 0.1 \times 10^{-18}$ W/m2 (Jaffe et al. 2001) and $5.9 \pm 2.1 \times 10^{-19}$ W/m2 (Edge et al. 2002). The line emission flux for Hα is measured to be 2.50×10^{-17} W/m2 (Baker et al. 2003). Finally, the UV spectroscopy reveals the presence of ionized O and C emitted as the intracluster gas cools through the 3×10^5 K regime (Oegerle et al. 2001).

In this paper, we present near-infrared imaging data of...
the $v = 1$–0 S(1) emission line of H$_2$ in the cooling flow cluster Abell 1795. Our observations and data reduction steps are described in detail in Section 2 and 3. Section 4 and 5 contains the results of our data analysis and the comparison with previous data on Abell 1795. A discussion and summary of our findings follows in Section 6.

2. Observations

We obtained images on the night of 2003 April 14 U.T. using CFHT-IR at the F/8 Cassegrain focus of the 3.6-m Canada-France-Hawaii Telescope (CFHT). The CFHT-IR detector is a HgCdTe CCD with 18.5 microns pixels and an angular scale of 0.211 arcsec per pixel. At a redshift of 0.0627, the $v = 1$–0 S(1) H$_2$ 2.12 μm emission line is observed in the K continuum (KC) filter. The observations were therefore taken in the KC filter (central wavelength 2.26 μm, $\Delta \lambda = 0.06$ μm) to detect the line emission and in the CO filter (central wavelength 2.296 μm, $\Delta \lambda = 0.02$ μm) to measure the continuum. A total of 5116 s of on-source integration was obtained in the KC filter and 14040 s in the CO filter. The exposures were broken into five dither positions of duration 246 s for the KC filter and 360 s for the CO filter. The photometric standard FS18 was observed at an airmass similar to our target for flux calibration.

3. Data Reduction

The initial stages of the data reduction followed standard procedures and were accomplished using IRAF\footnote{The Image Reduction and Analysis Facility (IRAF) is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.}. First the flat field frames were combined and the “light-off” combined frame was subtracted from the “light-on” combined frame. All our images were divided by the normalized resulting flat field image in order to remove pixel to pixel sensitivity variations. The resulting flat was also used to create a bad pixel mask for images in each filter. Sky subtraction was done using the IRAF package DIMALUM (Deep Infrared Mosaicing Software, UM..., Stanford et al. 1995). Our final KC and CO mosaics each cover an area of 4:5 by 4:5. The pixels in the final mosaics have half the size of the original pixels. Flux calibration was done using our standard star.

We subtracted the CO mosaic from the KC mosaic to obtain our final H$_2$ image. First, the images were aligned using the IRAF task IMSHIFT with an accuracy of half a pixel. Second, we matched the point spread functions (PSF) of the images in the two filters. This was done with the IRAF task PSFMATCH which smeared out the smaller PSF of the KC filter in order to match the PSF of the CO filter. Third, we corrected for the different filter transmission functions. Our resulting H$_2$ image is shown in Figure 1.

4. H$_2$ Flux Measurement

The central H$_2$ emission is aligned with the CDG (see Figure 1) and measures 2.88 kpc in extent. We calculate an H$_2$ line flux of $1.93 \pm 0.79 \times 10^{-18}$ W/m2. Our error estimate is derived from the flux residual in a star in our field (feature d in Figure 1) and is primarily due to PSF matching and alignment errors. Our flux measurement agrees well with the Jaffe et al. (2001) spectroscopic measurement of $1.58 \pm 0.1 \times 10^{-18}$ W/m2. As the inferred mass cooling rate from the H$_2$ flux is larger than the one inferred from the X-ray emission (Jaffe & Bremer 1997), we expect that reheating is occurring and we can use our observation to constrain the possible reheating mechanisms.

We use our measurement of the H$_2$ flux, in combination with the H$_\alpha$ flux determined by Baker et al. (2003) to estimate the H$_\alpha$/H$_2$ flux ratio. We expect this ratio to be greater than 30 for shock heating and a factor of ten lower for stellar UV excitation (Donahue et al. 2000). Previous observations of the H$_\alpha$/H$_2$ flux ratio in other CFCs find numbers of 1–10 which are too low for shock heating. The H$_\alpha$ flux determined by Baker et al. (2003) was measured in an aperture ~ 7 times larger the one used to determine the H$_2$ flux. We therefore calculate an upper limit for the H$_\alpha$/H$_2$ flux ratio of 13, ruling out shocks as the main source of heating.

We examine the morphology of our H$_2$ emission to put an extra constraint on the dominant excitation mechanism. Figure 2 shows a close-up of the central region of the H$_2$ image and one can clearly see the condensed morphology of the H$_2$ emission. If the heating is due to hot stars, we expect the H$_2$ emission to be filamentary and diffuse in morphology (Donahue et al. 2000). However, the H$_2$ emission associated with the CDG does not show any filamentary structure and there is no hint of an H$_2$ tail, such as the one seen in the H$_\alpha$ and the UV excess images. Rather, the morphology of the H$_2$ is condensed which is more in agreement with what is expected if the heating source is an AGN. If a faint H$_2$ tail exists, a higher signal-to-noise image is needed to reveal it.
5. Non-CDG \(\text{H}_2 \) Detection

As the field of view for CFHT-IR is large (3′ on a side) and our mosaic covers an even larger area (4′ by 4′), we are able to capture the \(\text{H}_2 \) emission, if present, coming from not only the CDG but surrounding galaxies as well. Although most other galaxies in the field do not show any \(\text{H}_2 \) emission, it is interesting to find 6 other sources of emission in our image, identified as Features b, c, and f-i in Figure 1 (note that Feature e is an instrumental artifact and should be ignored). This is quite surprising as the brightest \(\text{H}_2 \) emission is expected to be seen in the central cluster galaxy and there exist only attempts to search for \(\text{H}_2 \) emission from cooling flow clusters in the CDG itself.

Features c and h have a near-infrared counterpart as seen in the Two Micron All Sky Survey (2MASS). We extracted the images from the 2MASS Extended Source Image Server but their small size made it impossible to identify their morphological type. As we do not have spectra for these galaxies, we cannot rule out the possibility that their continuum emission differs from the CDG and other members of the cluster and that the flux we detect is not from \(\text{H}_2 \). Also, without redshift information, we cannot be certain that the \(\text{H}_2 \) line we are trying to detect falls as expected in the KC filter. However, we do have a redshift for Feature h of 0.0612. Moreover, Figure 3b of Cowie et al. (1983) shows H\(_\alpha\) emission at the location of Feature c and Figure 2 of McNamara et al. (1996) shows a UV excess at the location of Feature h. Therefore, in the particular case of Feature h, we are confident that we are seeing \(\text{H}_2 \) emission. Feature h is located at a distance of \(\sim 40 \) arcsec or 46 kpc from the CDG, which puts it inside the cooling radius \(\approx 2.6 \) arcmin or 181 kpc for Abell 1795, Grenatcher et al. (1999). However, it is unlikely that this \(\text{H}_2 \) emission is associated with the cooling flow process.

6. Discussion

We present imaging of \(\text{H}_2 \) emission in the central \(\sim 300 \) kpc in diameter region of the cooling flow cluster Abell 1795. The central \(\text{H}_2 \) emission, associated with the CDG and 2.88 kpc in extent, has a flux of \(1.93 \pm 0.79 \times 10^{-18} \) W/m\(^2\). We find that this value is in agreement with the spectroscopic result of Jaffe et al. (2001).

The \(\text{H}_2 \) flux measured in the CDG is larger than what is predicted for a cooling flow from the X-ray data. It appears that the \(\text{H}_2 \) gas is being reheated by an external source. We are able to calculate an upper limit for the H\(_\alpha\)/\(\text{H}_2 \) ratio of 13, ruling out reheating due to fast shocks. The H\(_\alpha\)/\(\text{H}_2 \) ratio is consistent with heating by hot stars. However, our \(\text{H}_2 \) image does not reveal any diffuse spatial structure usually associated with heating due to stellar UV sources. Rather, its condensed nature is more consistent with heating by an AGN. It is possible that a faint \(\text{H}_2 \) tail or faint filaments may be revealed in a deeper exposure.

An unexpected result is the detection of \(\text{H}_2 \) in galaxies surrounding the CDG. Although most other galaxies in the field do not show any \(\text{H}_2 \) emission, we detect \(\text{H}_2 \) emission in 6 other sources. This is quite surprising as the brightest \(\text{H}_2 \) emission is expected in the central cluster galaxy and there exist only attempts to search for \(\text{H}_2 \) emission in the CDG itself. In the particular case of Feature h, we are confident that we are seeing \(\text{H}_2 \) emission as we detect as well a UV excess at the same location and the redshift of the galaxy confirms that \(\text{H}_2 \) falls in our KC filter. Although this emission is located inside the cooling flow radius, it is unlikely that it is associated with the cooling flow process.

Thank you to the NRC for the travel grant available to Canadian University Astronomers. FM was supported in part by the NSERC UFA award.

References

Edge, A. C. MNRAS, 328, 762

