Suzaku XIS, HXD and XMM-Newton Observations of Thermal and Nonthermal Emission at Large Radii in the Merging Cluster Abell 3667

Craig L. Sarazin1, Kazuhiro Nakazawa2, Daniel R. Wik1, Alexis Finoguenov3,4, Madoka Kawaharada5, Kazuo Makishima2, Takao Kitaguchi2, Sho Okuyama2, Naomi Kawano6, Yasushi Fukazawa6, Susumu Inoue7, Motokazu Takizawa8, and Tracy E. Clarke9,10

1Department of Astronomy, University of Virginia; 2Department of Physics, University of Tokyo; 3Max Planck Institute for Extraterrestrial Physics; 4Center for Space Science Technology, University of Maryland Baltimore County; 5Cosmic Radiation Laboratory, RIKEN; 6Department of Physical Science, Hiroshima University; 7National Astronomical Observatory of Japan; 8Department of Physics, Yamagata University; 9Naval Research Laboratory; 10Interferometrics Inc.

Abell 3667 is the archetype of a merging cluster with radio relics. The NW radio relic is the brightest cluster relic or halo known, and is believed to be due to a strong merger shock. Abell 3667 was observed three times with Suzaku with pointings which covered the center of the cluster, the near NW portion, and the far NW region of the NW radio relic. In this poster and a companion poster (Nakazawa et al.), we present the results of the analysis of these observations, combined with a mosaic of observations with XMM-Newton. The spectra of the NW relic region with the Suzaku HXD PIN, XIS, and XMM-Newton pn detectors are fit simultaneously to determine the thermal and nonthermal X-ray emission from the NW radio relic. We find an upper limit on the nonthermal inverse Compton emission from the NW radio relic, which requires a rather large magnetic field, particularly at this large radius from the cluster center. If the relativistic particles and magnetic field are relatively uniform within the radio relic, this implies a substantial nonthermal contribution to the pressure in this regions. A detailed model for the thermal and nonthermal X-ray emission, radio emission, and dynamics of the cluster will be presented based on the Suzaku and XMM-Newton data. The cluster contains rather hot thermal gas, presumably associated with merger shocks. Thermal X-ray emission is detected out to nearly the virial radius of the cluster. There is a steep gradient in the surface brightness near the radio relic, which may indicate that a merger shock is located there.